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Memory and Word Order
● Online memory limitations well-established as a factor in sentence processing

● argued to account for crosslinguistic word order regularities (Hawkins 1993, Temperley, 2018, …)
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(Gibson, 1998; Lewis and Vasishth, 
2005; Demberg & Keller, 2008; Shain 
et al., 2016)
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(Gibson, 1998; Lewis and Vasishth, 
2005; Demberg & Keller, 2008; Shain 
et al., 2016)

Challenge: When testing memory-based explanations of word order, how 

can we minimize dependence on specific architectural assumptions?



This talk
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(Gibson, 1998; Lewis and Vasishth, 
2005; Demberg & Keller, 2008; Shain 
et al., 2016)

1. Information-theoretic formalization of memory limitations

2. Prove theorem describing tradeoff between memory and surprisal, 

without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the 

memory-surprisal tradeoff?



Starting Point: Surprisal Theory (Hale, 2001; Levy, 2008; Smith & Levy, 2013; Hale, 2016)

Processing difficulty at a
word is equal to the
surprisal of that word
in context:

C(w | context)
= -log P(w | context)
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A forgetful 
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incurs higher 
average 
surprisal.
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Memory-Surprisal Tradeoff

Having better 
representation of the 
past improves 
prediction of the future 
on average.
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Different languages 
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Different languages 
can lead to different 
tradeoffs

Achieving at most 3.5 
bits of average surprisal 
takes...
1.0 bit of memory in 
Language A
2.0 bits of memory in 
Language B

31



Different languages 
can lead to different 
tradeoffs

Language A has 
a more favorable 
tradeoff
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This talk
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(Gibson, 1998; Lewis and Vasishth, 
2005; Demberg & Keller, 2008; Shain 
et al., 2016)

1. Information-theoretic formalization of memory limitations

2. Prove theorem describing tradeoff between memory and surprisal, 

without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the 

memory-surprisal tradeoff?



Different languages 
can lead to different 
tradeoffs

Language A has 
a more favorable 
tradeoff
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Does human language provide 
efficient tradeoffs?



This talk

35

(Gibson, 1998; Lewis and Vasishth, 
2005; Demberg & Keller, 2008; Shain 
et al., 2016)

1. Information-theoretic formalization of memory limitations

2. Prove theorem describing tradeoff between memory and surprisal, 

without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the 

memory-surprisal tradeoff?



Conditional Mutual Information
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Conditional Mutual Information

X1 X2 X3 X4
X1 X2 X3 X4

X0??
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Conditional Mutual Information

X1 X2 X3 X4
X1 X2 X3 X4

X0??

Surprisal based on t words of 
context

Surprisal based on t+1 words 
of contextMINUS

is the definition of:
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Conditional Mutual Information

How much information 
do words t steps apart 
contain about each 
other, controlling for 
info redundant with 
intervening words?
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t

Information 
about the 
current word 
contained in the 
last preceding 
word

Information 
about the 
current word 
contained two 
words in the 
past
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(Proof: bonus slides)
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Theorem: For any T, to achieve at most A bits of extra 
surprisal, a listener needs to invest at least B bits of memory.
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T

Information Locality 
Theorem
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(Proof: bonus slides)
Theorem is independent of the memory 
architecture.

Listener has to store at least as many bits, 
independently of the memory architecture.

No need to be committed to a specific 
architecture!
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2. Prove theorem describing tradeoff between memory and surprisal, 

without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the 

memory-surprisal tradeoff?
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Experiment 1:
Dependency Length in an Artificial 

Language
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Fedzechkina et al. 2018

Language A (long dependencies)

Dependency Length in an Artificial Language
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Fedzechkina et al. 2018

Language A (long dependencies)

Language B (short dependencies)

Dependency Length in an Artificial Language
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Fedzechkina et al. 2018

Language A (long dependencies)

Language B (short dependencies)

Dependency Length in an Artificial Language

Participants tended 
to produce orders 
with shorter 
dependencies
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Language A (long dependencies)

Language B (short dependencies)

Dependency Length in an Artificial Language
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Experiment 2:
Crosslinguistic Word Orders
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Question: Does language optimize 
the Memory-Surprisal tradeoff?



Method
1. Syntactic corpora from the Universal Dependencies Project (54 languages)

2. Create counterfactual orderings of the syntactic trees

3. Estimate memory-surprisal tradeoff

4. Compare memory need between real and counterfactual versions.
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Method
1. Syntactic corpora from the Universal Dependencies Project (54 languages)

2. Create counterfactual orderings of the syntactic trees

3. Estimate memory-surprisal tradeoff

4. Compare memory need between real and counterfactual versions.
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Estimated using LSTM recurrent 
neural networks

● essentially the state of the art in 
statistical modeling of language

● similar results obtained using 
traditional methods (transition 
probabilities & n-gram models)
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Random baseline order 
grammars

Actual language
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Japanese
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Real orderings leads to better 
tradeoff (p < 0.001) in 50 out of 54 
languages



Conclusions
There is a tradeoff between listener memory and experienced surprisal.
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We formalize it using Information Theory, minimizing architectural assumptions

Conclusions
There is a tradeoff between listener memory and experienced surprisal.
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Languages with short dependencies have better tradeoffs.

Crosslinguistic word orders support more efficient 
tradeoffs than most counterfactual orders.



Thanks!
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I[X1,  Past] - I[X1,          0 ] ≥ Past

I[X1,  Past] - I[X1,          0 ] 

Lower-bound on 
listener memory

Bound this by averaging over a block of T words:

Listener’s extra surprisal is equal to

)



I[X1,  Past] - I[X1,          0 ] ≥ Past

I[X1,  Past] - I[X1,          0 ] 

Can compute this 
explicitly

Bound this by averaging over a block of T words:

Listener’s extra surprisal is equal to

)



I[X1,  Past] - I[X1,          0 ] ≥ Past

I[X1,  Past] - I[X1,          0 ] 

Can compute this 
explicitly

Bound this by averaging over a block of T words:

Listener’s extra surprisal is equal to

)

T +



I[X1,  Past] - I[X1,          0 ] ≥ Past

I[X1,  Past] - I[X1,          0 ] 

Bound this by averaging over a block of T words:

Listener’s extra surprisal is equal to

)T + -



I[X1,  Past] - I[X1,          0 ]  ≥ 

I[X1,  Past] - I[X1,          0 ] 

Bound this by averaging over a block of T words:

Listener’s extra surprisal is equal to



I[X1,  Past] - I[X1,          0 ] ≥ 

I[X1,  Past] - I[X1,          0 ] 

Bound this by averaging over a block of T words:

Listener’s extra surprisal is equal to

QED


