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Memory and Word Order

e Online memory limitations well-established as a factor in sentence processing

e argued to account for crosslinguistic word order regularities (Hawkins 1993, Temperley, 2018, ...)
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Challenge: When testing memory-based explanations of word order, how

can we minimize dependence on specific architectural assumptions?




This talk

1. Information-theoretic formalization of memory limitations

2. Prove theorem describing tradeoff between memory and surprisal,
without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the

memory-surprisal tradeoff?
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Reading Time

Surprisal (Smith and Levy 2013)
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Memory-Surprisal Tradeoff

Having better
representation of the
past improves
prediction of the future
on average.
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Different languages
can lead to different
tradeoffs

Language A has
a more favorable — _—
tradeoff

4.5

— 40
©
L
=
=
)

- 35

3.0

Language B

Language A

00 05 10 15 20 25
Memory (bits)



This talk

1. Information-theoretic formalization of memory limitations

2. Prove theorem describing tradeoff between memory and surprisal,
without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the

memory-surprisal tradeoff?
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Conditional Mutual Information
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Intuition: Carrying
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Theorem: For any T, to achieve at most A bits of extra
surprisal, a listener needs to invest at least B bits of
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Theorem: For any T, to achieve at most A bits of extra
surprisal, a listener needs to invest at least B bits of memory.

Theorem is independent of the memory
architecture.

Listener has to store at least as many bits,

independently of the memory architecture.

No need to be committed to a specific
architecture!
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This talk

1. Information-theoretic formalization of memory limitations

2. Prove theorem describing tradeoff between memory and surprisal,
without assumptions about memory architecture

3. Test: Are crosslinguistic word orders optimized for the

memory-surprisal tradeoff?
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Experiment 1.
Dependency Length in an Artificial
Language




Dependency Length in an Artificial Language
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rizba redal lanferda sool barsadi kyse
np [MOUNTIE] wp [[RED STOOL ON] HUNTER-OBJ]  y[PUNCH]
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Dependency Length in an Artificial Language

Language A (long dependencies)

Short Dependent Long Dependent Verb

rizba redal lanferda sool barsadi kyse
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Dependency Length in an Artificial Language
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Experiment 2:
Crosslinguistic Word Orders

Question: Does language optimize
the Memory-Surprisal tradeoff?
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Method

Syntactic corpora from the Universal Dependencies Project (54 languages)
Create counterfactual orderings of the syntactic trees

Estimate memory-surprisal tradeoff

A\

Compare memory need between real and counterfactual versions.
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Method

Syntactic corpora from the Universal Dependencies Project (54 languages)
Create counterfactual orderings of the syntactic trees

Estimate memory-surprisal tradeoff

s w0 b~

Compare memory need between real and counterfactual versions.

67



Dependency Corpus

obj

nummod

Mary has two green books

68



Dependency Corpus

obj

nummod
nsubj

amod

Mary has two green books

'

Tree Topologies

books green

has
two
Mary

69



Dependency Corpus

obj

nummod

Mary has two green books

'

Ordering Grammar

amod

NOUN —— ADJ 0.3
NOUN nummod NUM 0.7

VERB =2 NOUN .02

vVErRe 2> NOUN 08

Tree Topologies

books green

has
two
Mary

70



Dependency Corpus

obj

nummod
nsubj

amod

Mary has two green books

'

Tree Topologies

books
has green

two
Mary

Ordering Grammar

amod

NOUN —— ADJ 0.3
NOUN nummod NUM 0.7

nsubj

VERB — NOUN 02

vVErRe 2> NOUN 08

“Object follows
verb”

71



Dependency Corpus

nummod

nsubj

Mary has two green books

'

Tree Topologies

‘ books
has/\ E green
two
Mary

Ordering Grammar

NOUN nummod NUM 0.7

VERB =2 NOUN .02

vVErRe 2> NOUN 08

“Object follows
verb”

“Adjective
precedes noun”

72



Dependency Corpus

nummod

nsubj

Mary has two green books

'

Tree Topologies

J books ;i
has/\ green
two

Mary

Ordering Grammar

NOUN =% ADJ 0.3
NOUN nummod NUM 0.7

nsubj

VERB —— NOUN 02

VERE 2+ NOUN 08

“Adjective
precedes noun”

“Object follows

verb”
“Numerals follow
adjectives &
precede nouns”

73



Dependency Corpus

obj

nummod

Mary has two green books
Tree Topologies
books
has green
two
Mary

Ordering Grammar

amod

NOUN —— ADJ 0.3
NOUN nummod NUM 0.7

VERB =2 NOUN .02

vVErRe 2> NOUN 08

'

Counterfactual Corpus

NN NN

books green two has Mary

74



Dependency Corpus

nummod

nsubj

Mary has two green books

'

Ordering Grammar

amod

NOUN — ADJ 0.3
nummod

NOUN —— NUM 0.7

nsubj

VERB —— NOUN g9

obj
VERB —— NOUN 0.8

'

Each parameter
setting
generates a
different
counterfactual
corpus.

Tree Topologies

J books
has/\ E green
two

Mary

Counterfactual Corpus

NN NN

books green two has Mary

75



Dependency Corpus

nummod

nsubj

Mary has two green books

'

Ordering Grammar

amod

NOUN — ADJ 0.9
nummod

NOUN —— NUM 0.1

nsubj

VERB —— NOUN g5

obj
VERB —— NOUN 0.2

'

Each parameter
setting
generates a
different
counterfactual
corpus.

Tree Topologies

J books
has/\ E green
two

Mary

Counterfactual Corpus

¥V N W\

green books two has Mary

76



Dependency Corpus

nummod

nsubj

Mary has two green books

'

NOUN 2%

nummod
NOUN —
nsubj
VERB —
obj
VERB —

Ordering Grammar

ADJ 0.1
NUM 0.95
MOERT 1)/ )

NOUN 0.82

'

Each parameter
setting
generates a
different
counterfactual
corpus.

Tree Topologies

J books
has/\ E green
two

Mary

Counterfactual Corpus

AWV N N

has books green two Mary

77



Dependency Corpus Ordering Grammar
NoUN ™ ADJ 03
Noun "™ Num 07
VERB L S NOUN 0.2

VERB ®» NOUN 08

Mary has  two green books We Compute
l l memory-surprisal
Tree Topologies Counterfactual Corpus tradeoff on
counterfactual
books green > m CO rpora '
has books green two has Mary
two
Mary

»
o

=)

/

Surprisal

o

w
=)

Memory 8



Dependency Corpus

nummod

amod

Ordering Grammar
NOUN 2% ADJ 0.3
NoUN "™ NuM 0.7
VvERB % NOUN 0.2

dobj
VERB —» NOUN 0.8

:

Mary has two green books
Tree Topologies
books
las green
two
Mary

Counterfactual Corpus

NN NN

books green two has Mary

\

We compute
memory-surprisal
tradeoff on
counterfactual
corpora.

P
=) o

o

Surprisal

w
=)

Memory 9



Dependency Corpus Ordering Grammar
NOUN ™% ADJ 0.9
SR NOUN ™™ NuM 0.1

vere =% NOUN 05

o VERE “» NOUN 02
Mary has two green books We CompUte .
memory-surprisal
l l tradeoff on
Tree Topologies Counterfactual Corpus counterfactual
corpora.
ok Jeen I W\
has green  books  two has Mary
tWO 4.5

=)

Mary \

o

Surprisal

w
=)

Memory 50



Dependency Corpus

nummod

amod

Ordering Grammar
NOUN ™% ADJ 0.1
NOUN ™™ NuM 0.95
VERB % NOUN  04.2

vEre ®» NOUN (.82

:

Mary has two green books
Tree Topologies
books
has green

two
Mary

Counterfactual Corpus

A N N

has

books green two Mary

\

We compute
memory-surprisal
tradeoff on
counterfactual
corpora.

P
o =) o

Surprisal

w
=)

81



Dependency Corpus

nummod

amod

Ordering Grammar
NOUN ™% ADJ 0.1
NOUN ™™ NuM 0.95
VERB % NOUN  04.2

vEre ®» NOUN (.82

:

Mary has two green books
Tree Topologies
books
has green

two
Mary

Counterfactual Corpus

A N N

has

books green two Mary

\

We compute
memory-surprisal
tradeoff on
counterfactual
corpora.

P
o =) o

Surprisal

w
=)

82



Dependency Corpus

nummod

amod

Ordering Grammar
NOUN ™% ADJ 0.1
NOUN ™™ NuM 0.95
VERB % NOUN  04.2

vEre ®» NOUN (.82

:

Mary has two green books
Tree Topologies
books
has green

two
Mary

Counterfactual Corpus

A N N

has

books green two Mary

\

We compute
memory-surprisal
tradeoff on
counterfactual
corpora.

P
o =) o

Surprisal

w
=)

83



Method

Syntactic corpora from the Universal Dependencies Project (54 languages)
Create counterfactual orderings of the syntactic trees

Estimate memory-surprisal tradeoff

.

Compare memory need between real and counterfactual versions.
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Estimated using LSTM recurrent
neural networks

e essentially the state of the art in
statistical modeling of language

e similar results obtained using

traditional methods (transition
probabilities & n-gram models)
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Conclusions

There is a tradeoff between listener memory and experienced surprisal.



Conclusions

There is a tradeoff between listener memory and experienced surprisal.

We formalize it using Information Theory, minimizing architectural assumptions

Theorem: For any T, to achieve at most A bits of extra
surprisal, a listener needs to invest at least B bits of memory.
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Conclusions

There is a tradeoff between listener memory and experienced surprisal.

We formalize it using Information Theory, minimizing architectural assumptions
Languages with short dependencies have better tradeoffs.

0.301

0.254

o
o
(=]

Surprisal

Order
-A

-B
0.154

22 24
Memory

94



Conclusions

There is a tradeoff between listener memory and experienced surprisal.

We formalize it using Information Theory, minimizing architectural assumptions

Languages with short dependencies have better tradeoffs.
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Thanks!

96



Proof




Theorem: Forany T, a
listener investing only A
bits of memory incurs at
least B bits of extra
surprisal.
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Theorem: Forany T, a
listener investing only A
bits of memory incurs at
least B bits of extra
surprisal.

25 5.0 75
Distance

10.0

25

5.0
Distance

7.5

10.0



Listener Surprisal = H[X.] - I[X. g 0l




Listener Surprisal = H[X,] - I[X,,& ]

1 ) - 4
Optimal Surprisal = H[X,] - I[X,, Past]
Past N




Listener Surprisal = H[X

Optimal Surprisal = H[X

-

-

X,, Past]

Listener’s extra surprisal is equal to

X, Past]-I[X, 2 ]



Listener Surprisal =

Optimal Surprisal =

X,
X,

v M

X,, Past]

Listener’s extra surprisal is equal to

X, Past]-I[X1,3 0]

We want to lower-bound this by - ‘




Listener’s extra surprisal is equal to

X, Past]-IX, & ,]



Listener’s extra surprisal is equal to
N
X, Past]-1[X;, @ ,]

Bound this by averaging over a block of T words:

1
I[X,, Past]- |[X1,§ 0] E? (11X 7 |Past | —I[Xl...r\§|)



Listener’s extra surprisal is equal to
N
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This is bounded by the listener’s
memory!
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QED



