Cross-Linguistic Word Orders Enable an Efficient Tradeoff of Memory and Surprisal

Michael Hahn
Stanford

Judith Degen Richard Futrell
Stanford
UC Irvine

Memory and Word Order

- Online memory limitations well-established as a factor in sentence processing
- argued to account for crosslinguistic word order regularities (Hawkins 1993, Temperiey, 2018, ...)

Sentence Length
(Futrell et al., 2015)

Memory and Word Order

- Online memory limitations well-established as a factor in sentence processing
- argued to account for crosslinguistic word order regularities (Hawkins 1993, Temperes, 2018, ...)
- Memory limitations have been cached out in many different ways
- Dependency Locality (Gibson 1998)
- Cue-based retrieval (McElree 2000; Lewis and Vasishth 2005; ...)
\bigcirc

Memory and Word Order

- Online memory limitations well-established as a factor in sentence processing
- argued to account for crosslinguistic word order regularities (Hawkins 1993, Temperley, 2018, ...)
- Memory limitations have been cached out in many different ways
- Dependency Locality (Gibson 1998)
- Cue-based retrieval (McElree 2000; Lewis and Vasishth 2005; ...)

O
Challenge: When testing memory-based explanations of word order, how can we minimize dependence on specific architectural assumptions?

This talk

1. Information-theoretic formalization of memory limitations
2. Prove theorem describing tradeoff between memory and surprisal, without assumptions about memory architecture
3. Test: Are crosslinguistic word orders optimized for the memory-surprisal tradeoff?

Starting Point: Surprisal Theory (Hale, 2001; Levy, 2008; Smith \& Levy, 2013; Hale, 2016)

Processing difficulty at a word is equal to the surprisal of that word in context:

```
C(w | context)
= -log P(w | context)
```


Surprisal

Surprisal

$$
\begin{array}{ll}
\text { up? } & 0.65 \\
\text { the } & 0.2 \\
\text { a } & 0.15
\end{array}
$$

.. ...

Surprisal

Surprisal(up|Hey! What's)
 $=-\log 0.65 \sim 0.18$

Surprisal

Surprisal

Listener has forgotten the past.

Surprisal(up|???)
$=-\log 0.09 \sim 2.4$

Surprisal

Listener has forgotten the

Cannot utilize context for prediction.
past.

Surprisal(up|???)
$=-\log 0.09 \sim 2.4$

Hey!
What's

Surprisal

Listener has forgotten the past.

Cannot utilize context for prediction.

Incurs higher surprisal

Surprisal(up|???)
 $=-\log 0.09 \sim 2.4$

Surprisal

A forgetful listener

 incurs higher average surprisal.> Surprisal(up|???)
> $=-\log 0.09 \sim 2.4$

Memory-Surprisal Tradeoff

Having better representation of the
past improves
prediction of the future on average.

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory (bits)

Memory-Surprisal Tradeoff

 Having better representation of the past improves prediction of the future on average.

Memory (bits)

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

> B will incur lower surprisal on average

Memory-Surprisal Tradeoff

Having better

 representation of the past improves prediction of the future on average.

Memory (bits)

A listener with suboptimal memory allocation can be above the curve

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Mathematically impossible to be below

Memory (bits)

Memory-Surprisal Tradeoff

Having better representation of the past improves prediction of the future on average.

Memory (bits)

Different languages can lead to different tradeoffs

Different languages can lead to different tradeoffs

Achieving at most 3.5 bits of average surprisal takes...

Different languages can lead to different tradeoffs

Achieving at most 3.5 bits of average surprisal takes...
1.0 bit of memory in Language A

Different languages can lead to different tradeoffs

Achieving at most 3.5 bits of average surprisal takes...
1.0 bit of memory in Language A
2.0 bits of memory in _ - - 3.0^{-}

Language B

This talk

1. Information-theoretic formalization of memory limitations
2. Prove theorem describing tradeoff between memory and surprisal, without assumptions about memory architecture
3. Test: Are crosslinguistic word orders optimized for the memory-surprisal tradeoff?

This talk

1. Information-theoretic formalization of memory limitations
2. Prove theorem describing tradeoff between memory and surprisal, without assumptions about memory architecture
3. Test: Are crosslinguistic word orders optimized for the memory-surprisal tradeoff?

Conditional Mutual Information

$$
\mathrm{I}\left[X_{t}, X_{0} \mid X_{1}, \ldots, X_{t-1}\right]
$$

Conditional Mutual Information

$? ? \mathrm{x}_{1} \mathrm{x}_{2} \quad \mathrm{x}_{3} \mathrm{X}_{4}$

$\left\{\begin{array}{llllll}x_{0} & x_{1} & x_{2} & x_{3} & x_{4} \\ \end{array}\right.$

Conditional Mutual Information

ด
 $? ? \mathrm{X}_{1} \mathrm{X}_{2} \quad \mathrm{X}_{3} \mathrm{X}_{4}$

Surprisal based on t words of

 contextSurprisal based on $\mathrm{t}+1$ words of context

Conditional Mutual Information

How much information do words t steps apart contain about each other, controlling for
 info redundant with intervening words?

$\mathrm{I}\left[X_{t}, X_{0} \mid X_{1}, \ldots, X_{t-1}\right]$

Information about the current word contained in the last preceding word

Intuition: Carrying information over long distances costs proportionally more.

This talk

1. Information-theoretic formalization of memory limitations
2. Prove theorem describing tradeoff between memory and surprisal, without assumptions about memory architecture
3. Test: Are crosslinguistic word orders optimized for the memory-surprisal tradeoff?

This talk

1. Information-theoretic formalization of memory limitations
2. Prove theorem describing tradeoff between memory and surprisal, without assumptions about memory architecture
3. Test: Are crosslinguistic word orders optimized for the memory-surprisal tradeoff?

Experiment 1:
 Dependency Length in an Artificial Language

Dependency Length in an Artificial Language

Language A (long dependencies)

Short Dependent	Long Dependent	Verb
rizba	redal lanferda sool barsadi	kyse
NP [MOUNTIE]	NP [[RED STOOL ON] HUNTER-OBJ]	

Dependency Length in an Artificial Language

Language A (long dependencies)

Short Dependent	Long Dependent	Verb
rizba	redal lanferda sool barsadi	kyse
np [MOUNTIE]	np [[RED STOOL ON] HUNTER-OBJ]	${ }_{\mathrm{v}}$ [PUNCH]
	5	

Language B (short dependencies)

Long Dependent		
	Short Dependent	Verb
redal lanferda sool barsadi	rizba	kyse
NP [[RED STOOL ON] HUNTER-OBJ]	NP [MOUNTIE]	v[PUNCH]

Dependency Length in an Artificial Language

Language A (long dependencies)

Short Dependent	Long Dependent	Verb
rizba	Ledal lanferda sool barsadi NP [MOUNTIE]	kyse nP [IRED STOOL ON] HUNTER-OBJ]

Participants tended to produce orders with shorter dependencies

Language B (short dependencies)

Fedzechkina et al. 2018

Dependency Length in an Artificial Language

Language A (long dependencies)

Short Dependent	Long Dependent rizba	Verb np [MOUNTIE] redal lanferda sool barsadi np [[RED STOOL ON] HUNTER-OBJ]

Language B (short dependencies)

Long Dependent		Short Dependent	Verb
redal lanferda sool barsadi	rizba	kyse	
NP [[RED STOOL ON] HUNTER-OBJ]	NP [MOUNTIE]	v [PUNCH]	

Experiment 2: Crosslinguistic Word Orders

Question: Does language optimize the Memory-Surprisal tradeoff?

Method

1. Syntactic corpora from the Universal Dependencies Project (54 languages)
2. Create counterfactual orderings of the syntactic trees
3. Estimate memory-surprisal tradeoff
4. Compare memory need between real and counterfactual versions.

Method

1. Syntactic corpora from the Universal Dependencies Project (54 languages)
2. Create counterfactual orderings of the syntactic trees
3. Estimate memory-surprisal tradeoff
4. Compare memory need between real and counterfactual versions.

Method

1. Syntactic corpora from the Universal Dependencies Project (54 languages)
2. Create counterfactual orderings of the syntactic trees
3. Estimate memory-surprisal tradeoff
4. Compare memory need between real and counterfactual versions.
Dependency Corpus

"Object follows verb"

"Object follows
verb"

"Numerals follow adjectives \& precede nouns"

Each parameter setting

 generates a different counterfactual corpus.

Method

1. Syntactic corpora from the Universal Dependencies Project (54 languages)
2. Create counterfactual orderings of the syntactic trees
3. Estimate memory-surprisal tradeoff
4. Compare memory need between real and counterfactual versions.

Estimated using LSTM recurrent neural networks

- essentially the state of the art in statistical modeling of language
- similar results obtained using traditional methods (transition probabilities \& n-gram models)

Memory

Afrikaans

Cantonese

Estonian

Indonesian

North Sami

Slovenian

Amharic

Catalan

Faroese

Italian

Norwegian

Spanish

Arabic

Chinese

Finnish

Japanese

Persian

Swedish

Armenian

French

Kazakh

Polish

Thai

Bambara

Czech

German

Korean

Portuguese

Basque

Danish

Greek

Kurmanji

Romanian

Breton

Dutch

Hebrew

Latvian

Russian

Bulgarian
Buryat

English

Hindi

Maltese

Serbian

Slovak

Afrikaans

Cantonese

Amharic

Catalan

Real orderings leads to better

 tradeoff (p < 0.001) in 50 out of 54 languages

Slovenian

Spanish

Swedish

Arabic

Chinese

Armenian

Croatian

Bambara

Czech

Basque

Danish

Greek

Kurmanji

Romanian

Breton

Dutch

Hebrew

Latvian

Russian

Bulgarian

Buryat

English

Hindi

Maltese

Serbian

Conclusions

There is a tradeoff between listener memory and experienced surprisal.

Conclusions

There is a tradeoff between listener memory and experienced surprisal.
We formalize it using Information Theory, minimizing architectural assumptions

Conclusions

There is a tradeoff between listener memory and experienced surprisal.
We formalize it using Information Theory, minimizing architectural assumptions
Languages with short dependencies have better tradeoffs.

Conclusions

There is a tradeoff between listener memory and experienced surprisal.
We formalize it using Information Theory, minimizing architectural assumptions
Languages with short dependencies have better tradeoffs.

Thanks!

Proof

Proof

Assume that the

 listener's memory contains at most - bits

Proof

Listener Surprisal $=H\left[X_{1}\right]-I\left[X_{1},{ }_{0}\right]$

Listener Surprisal $=H\left[X_{1}\right]-I\left[X_{1},{ }_{0}\right]$
Optimal Surprisal $=H\left[X_{1}\right]-\mathrm{I}\left[\mathrm{X}_{1}\right.$, Past $]$

Listener Surprisal $=H\left[X_{1}\right]-1\left[X_{1}{ }_{0}\right]$
Optimal Surprisal $=H\left[X_{1}\right]-\mathrm{I}\left[\mathrm{X}_{1}\right.$, Past $]$
Listener's extra surprisal is equal to

$$
\mathrm{I}\left[\mathrm{X}_{1}, \text { Past }\right]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{C}_{0}\right]
$$

Listener Surprisal $=\mathrm{H}\left[\mathrm{X}_{1}\right]-\mathrm{I}\left[\mathrm{X}_{1}{ }_{0}{ }_{0}\right]$
Optimal Surprisal $=H\left[X_{1}\right]-I\left[X_{1}\right.$, Past $]$
Listener's extra surprisal is equal to

$$
1\left[\mathrm{X}_{1}, \text { Past }\right]-1\left[\mathrm{X}_{1}, 0_{0} 0_{0}\right]
$$

We want to lower-bound this by

Listener's extra surprisal is equal to

$$
1\left[X_{1} \text {, Past }\right]-1\left[X_{1} \text {, }{ }_{0} 0_{0}\right]
$$

Listener's extra surprisal is equal to

Bound this by averaging over a block of T words:

$$
\mathrm{I}\left[\mathrm{X}_{1}, \text { Past }\right]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{CB}_{0}\right] \geq \frac{1}{T}\left(I\left[X_{1 \ldots T} \mid \text { Past }\right]-I\left[X_{1 \ldots T} \mid \text { 会 } \mid\right)\right.
$$

Listener's extra surprisal is equal to

$$
1\left[\mathrm{X}_{1} \text {, Past }\right]-1\left[\mathrm{X}_{1}, \theta_{0} 0_{0}\right]
$$

Bound this by averaging over a block of T words:

This is bounded by the listener's memory!

Listener's extra surprisal is equal to

Bound this by averaging over a block of T words:
$\mathrm{I}\left[\mathrm{X}_{1}\right.$, Past $]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{~S}_{0}\right] \geq \frac{1}{T}\left(I\left[X_{1 \ldots T} \mid\right.\right.$ Past $]-$
$\begin{aligned} & \text { Lower-bound on } \\ & \text { listener memory }\end{aligned}$

Listener's extra surprisal is equal to

Bound this by averaging over a block of T words:
$\mathrm{I}\left[\mathrm{X}_{1}\right.$, Past $]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{P}_{0}\right] \geq \frac{1}{T}\left(\underset{\substack{\text { Can compute this } \\ \text { explicitly }}}{I\left[X_{1 \ldots T} \mid \text { Past }\right]-\sim}\right)$

Listener's extra surprisal is equal to

Bound this by averaging over a block of T words:
$\mathrm{I}\left[\mathrm{X}_{1}\right.$, Past $]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{R}_{0}\right] \geq \frac{1}{T}\left(I\left[X_{1 \ldots T} \mid\right.\right.$ Past $]-$
$\mathrm{T}+\square$

Listener's extra surprisal is equal to

Bound this by averaging over a block of T words:

$$
\mathrm{I}\left[\mathrm{X}_{1} \text {, Past }\right]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{~B}_{0}\right] \equiv \frac{1}{T}(\mathrm{~T} \square+\square-\square)
$$

Listener's extra surprisal is equal to

Bound this by averaging over a block of T words:
$\mathrm{I}\left[\mathrm{X}_{1}\right.$, Past $\left.]-\mathrm{I}\left[\mathrm{X}_{1}, \mathrm{~B}_{0}\right] \geq\right]_{\square}$

Listener's extra surprisal is equal to

$$
1\left[\mathrm{X}_{1} \text {, Past }\right]-1\left[\mathrm{X}_{1}, 0_{0} 0_{0}\right]
$$

Bound this by averaging over a block of T words:

